

Theoretical scaling of the operational density limit in tokamaks and comparison to experimental data

Paolo Ricci¹, M. Giacomin², A. Pau¹, O. Sauter¹, T. Eich³, P. Manz⁴, The ASDEX Upgrade Team, JET Contributors, TCV Team

EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland
 Dipartimento di Fisica G. Galilei, Università degli studi di Padova, Italy
 Max-Planck-Institute for Plasma Physics, Garching, Germany
 Institute of Physics, University of Greifswald, Germany

Swiss Plasma Center EUROfusion

24 January 2024

EPFL Limited predictive capabilities of empirical Greenwald limit

Maximum achievable density in real-time controlled discharges show hidden dependencies

Swiss Plasma Center

EDER Edge physics determines density limit

Two mechanisms, providing similar predictions for AUG [Manz et al., NF 2023]:

• Radiative collapse [Gates *et al*, PRL 2012; Zanca *et al* PRL 2017; Streth *et al*, NE 2022].

Enhanced turbulent transport [Rogers *et al,* PRL 1998; Eich *et al,* NF 2021; Brown *et al,* NME 2021; Singh *et al,* PPCF 2022].

Manz et al., NF 2023

EPFL MARFE onsets precedes disruption

Phenomena triggering the MARFE are key to understand density limit

EDFL Edge pressure gradient collapse precedes MARFE onset

Swiss

Plasma Center

EPFL Based on local edge parameters, AUG operational space explained in terms of transition between turbulent regimes

Swiss Plasma

Center

Need of boundary simulations

EPFL Properties of boundary turbulence

- $\cdot n_{fluc} \sim n_{eq}$
- $\cdot L_{fluc} \sim L_{eq}$
- Fairly collisional magnetized plasma (< 100 eV, $n_e \sim 10^{19} \text{ m}^{-3}$)
- [.] Role of neutrals
- Sheath physics

Swiss Plasma Center

EPFL A model to evolve boundary plasma turbulence

Swiss Plasma

Center

EPFL A model to evolve boundary plasma turbulence

+ coupling with kinetic neutrals

$$\frac{\partial f_n}{\partial t} + \mathbf{v} \cdot \frac{\partial f_n}{\partial \mathbf{x}} = -\nu_{\text{ion}} f_n - \nu_{\text{CX}} (f_n - n_n f_i / n_i) + \nu_{\text{rec}} f_i$$
STREAMING IONIZATION CHARGE RECOMBINATION
$$\nu_{\text{ion}} = n \langle v_e \sigma_{\text{ion}} \rangle \xrightarrow{\text{EXCHANGE}}_{\nu_{\text{CX}}} \frac{n \langle v_{\text{rel}} \sigma_{\text{CX}}(v_{\text{rel}}) \rangle}{\nu_{\text{rec}}} = n \langle v_e \sigma_{\text{rec}} \rangle$$

Wersal & Ricci, NF 2015

We solve in 3D geometry, taking into account turbulent transport, ionization and charge exchange processes, and losses at the vessel

EPFLBoundary conditions at the plasma-wall interface

- Set of b.c. for all quantities, generalizing Bohm-Chodura
- Checked agreement with PIC kinetic simulations
- Neutrals: reflection and re-emission with cosine distribution

Loizu et al., PoP 2012

Paolo Ricci

EPFL Turbulent simulations to investigate edge turbulent regimes

- Retain core-edge-SOL interplay
- No separation of equilibrium and fluctuating quantities
- Validated against experimental results [Oliveira, Body et al., NF 2022]

EPFL Four regimes of boundary turbulence

Swiss

Plasma Center

EPFL L-mode turbulence driven by resistive ballooning modes

Swiss Plasma Center

EPFL SOL width: balance of perpendicular and parallel transport

EPFL Good agreement between analytical L_p scaling and simulations $\space{-1.5mu}_{\mbox{\tiny P}}$

$$L_p \simeq q^{12/17} R^{7/17} P_{\text{SOL}}^{-4/17} a^{12/17} (1+\kappa^2)^{6/17} n^{10/17} B_T^{-12/17}$$

EPFL Good agreement between analytical estimate and multimachine database

Reliable understanding of key processes at tokamak edge

Swiss Plasma Center Prediction for ITER L-mode: $\lambda_q\simeq 3.5~{
m mm}$

EPFL Transition to large transport at high density

Swiss Plasma Center

EPFL Theoretical estimate of density limit based on operational parameters

$$\square n_{\lim} = n_{\lim}(P_{SOL}, a, R, \ldots)$$

[Giacomin et al., PRL 2022]

EPFL Good agreement between analytical and simulation results

Swiss Plasma Center No need of EM effects to access the density limit: electrostatic modes become large with collisionality

EPFL **Density limits depends on** I_p and a, but also on P_{SOL}

Density limit in physical units:

$$n_{\rm lim} = \alpha A^{1/6} a^{3/14} P_{\rm SOL}^{10/21} R^{-43/42} q^{-22/21} (1+\kappa^2)^{-1/3} B_T^{2/3}$$

 α : Numerical coefficient rising from order of magnitude estimates and numerical factors

Empirical Greenwald density limit:

$$n_{GW} = \frac{I_p}{\pi a^2}$$

Swiss

Density limit in terms of the plasma current:

$$n_{\rm lim} \sim P_{\rm SOL}^{0.48} R^{0.02} B_T^{-0.38} (1+\kappa)^{-0.33} \frac{I_p^{1.05}}{a^{1.88}}$$

Dependence on power observed in experiments [Bernert et al, PPCF 2014; Esposito Plasma et al, PRL 2008; Huber et al, JNM 2013] Center

EPFL Comparison with density limit in AUG, TCV and JET, in two scenarios

Standard L-mode:

ITER-relevant H-mode:

Data range:

 $n: 2 \times 10^{19} - 1.2 \times 10^{20} m^{-3}$, $I_p: 0.1 - 2.5$ MA, $B_0: 1.4 - 3$ T, $P_{SOL}: 0.1 - 9$

EPFL Good agreement with experimental data

[Giacomin et al., PRL 2022]

EPFL Significant improvement with respect to Greenwald

- Promising approach for real-time control in MAST-U [Berkery et al., PPCF 2023]
- Experimental campaign planned in DIII-D
- Prediction for ITER (P_{SOL} =50 MW, q=3, B_{T} =5.3 T): $n_{\text{lim}} \simeq 2.5 \times 10^{20} \text{ m}^{-3} > 2n_{GW}$
- Swiss Plasma Center

24

EPFL Final remarks

- Density limit set by edge dynamics
- Increase of density leads to higher collisionality, larger transport, triggering MARFE and disruption
- Analytical scaling provided show I_p and a dependence similar to Greenwald, but also P_{SOL} dependence
- Good agreement with AUG, JET and TCV discharges, as well as MAST-U
- Significantly larger safety margin than Greenwald in case of unintentional H-L transition in ITER
- Given possible role of other phenomena in setting density limit in tokamaks, further experimental investigations urgently needed.

EPFL Moving forward: multispecies simulation with detachment

Density increases, ionization front moves, heat flux to vessel reduced

Role in density limit?

A multispecies (D, D⁺, D₂, D₂⁺, e⁻) model allowed first simulations of highly-radiative (detached) scenarios

[Calado et al., PoP 2022, NF 2022, Mancini NF 2023]

lonisation source

26